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Abstract 

We present the basic formal and numerical aspects of higher-degree interpolated moving 

least squares (IMLS) methods. For simplicity, applications of these methods are restricted 

to two 1-D test cases: a Morse oscillator and a 1-D slice of the !potential 

energy surface. For these two test cases, we systematically examine the effect of 

parameters in the weight function (intrinsic to IMLS methods), the degree of the IMLS 

fit, and the number and placement of potential energy points.  From this systematic study, 

we discover compact and accurate representations of potentials and their derivatives for 

first-degree and higher-degree (up to nine-degree) IMLS fits. We show how the number 

of ab initio points needed to achieve a given accuracy declines with the degree of the 

IMLS.  We outline automatic procedures for ab initio point selection that can optimize 

this decline.   
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I. Introduction 

 

The development of accurate potential energy surfaces (PESs) that are determined 

from ab initio calculations is still a major issue in theoretical studies of chemical reaction 

dynamics. In spite of the prospects for straightforward aB initio dynamics simulations,1 

there is still a need to develop better methods for fitting analytic PESs. The levels of 

electronic structure theory required to make ab initio dynamics feasible are often 

inadequate for reactions.  Even with relatively inexpensive electronic structure methods, 

multiple studies on a PES (e.g., dynamics, kinetics, mechanisms, and isotope effects) 

make global fits to all or to large portions of the PES in principle advantageous. 

However, globally fitting ab initio PESs is still more an art than a science.  Even if the 

fitting procedure were routine, there is also a scaling problem with respect to PES 

dimensions.  For N atoms, there are 3N-6 internal degrees of freedom.  If m ab initio 

points are needed on the average to independently fit each degree of freedom, then the 

fully coupled potential requires m3N-6 ab initio points to establish the global fit.  This high 

dependence on N means that in practice most global fits to ab initio PESs are for 

triatomic systems.2,3 Relatively straightforward, “artless” fitting methods with weak 

scaling properties with respect to PES dimensions would find ready use in many reaction 

dynamics simulations. 

During the past 30 years, and especially in the past decade, a variety of PES 

fitting methods have been developed.3 These methods can be categorized as weighted or 

unweighted. Unweighted methods include least squares fitting methods,4 spline methods,5 

reproducing Kernel Hilbert space (RKHS) interpolation methods, 6 and hybrid methods 
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such as Morse-spline7 and rotated Morse-spline.8 With such methods, the fit at each PES 

geometry is determined by all the ab initio points.  Weighted methods include the 

modified Shepard interpolation method9,10,11,12 and the interpolated moving least squares 

(IMLS) method.13,14,15 With such methods, weights assigned to ab initio points make the 

fit at each PES geometry sensitive to only local ab initio data. 

Among the methods mentioned above, the IMLS is the least-used fitting method, 

though these methods are well known. Three decades ago McLain13 explored two-

dimensional fits for some simple nonchemical functions using zero-, first-, second-, third- 

and forth-degree IMLS methods. The popular modified Shepard interpolation9 introduced 

by Ischtwan and Collins a decade ago is based on the Shepard method itself, which is a 

zero-degree IMLS method (ZD-IMLS). Recently, Ishida and Schatz14 presented a 

variation on the modified Shepard method that incorporates an indirect second-degree 

IMLS (SD-IMLS) fit. The reason he Shepard method must be modified for chemical 

applications is that any ZD-IMLS method suffers from the flat-spot phenomenon 

whereby derivatives of the interpolated surface are zero at every data point. The 

modifications to Shepard interpolation solve this problem by using a Taylor expansion 

that included derivatives at each data points.14 The derivative information can be either 

directly computed as in the standard modification9 or approximated by SD-IMLS fits as 

in Ishida and Schatz.   

While modifications of ZD-IMLS methods are powerful, in fact the flat-spot 

phenomenon is a feature only of zero-degree IMLS.  All higher-degree IMLS methods 

have well behaved first derivatives.  Thus, while SD-IMLS methods can be used to 

approximate derivatives that are then used in a modified Shepard method, first-, second-, 
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and all higher-degree IMLS methods can in principle be used directly to fit ab initio 

points, resulting in smooth well-behaved PESs for chemically interesting systems.   

In what amounts to an extension of McLain’s work to chemically interesting 

fitting problems, we recently carried out the first higher-degree IMLS fit of a PES.16  This 

work is a straightforward first-degree IMLS (FD-IMLS) application to the triatomic PES7 

for . The resulting fit was smooth, well behaved, and accurate.  The 

results of this effort motivate us to systematically study the properties of higher-degree 

IMLS fits for chemical applications.  This paper is the first installment of that study and 

is exclusively dedicated to the simplest of fits, that of a one-dimensional potential curve 

rather than a potential surface.  Other papers in our study will focus on the challenge, 

articulated earlier, of developing higher-degree IMLS methods with weak dependencies 

on the number of dimensions of PESs.  However, this challenge can best be met by 

understanding at more elemental levels the performance of IMLS methods as a function 

of degree, parameters, and ab initio data sparsity in the representation of values and 

derivatives for one-dimensional curves. With this grounding, the expansion of the method 

to large numbers of dimensions is not difficult to do. 

22 @KK@ "#

In this one-dimensional study, we will not directly compute ab initio points at 

discrete locations and attempt to fit them.  Rather, we will use analytic functions, sample 

these functions at discrete locations as if we were doing ab initio electronic structure 

calculations, fit the discrete set of energies with IMLS methods, and then evaluate the 

accuracy of the fit everywhere by using our global knowledge of the analytic function.  

This approach allows a more quantitative analysis of IMLS methods provided the 

analytic functions selected are representative of the results of ab initio calculations.  For 
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the two analytic functions we use in this study, that is in fact the case.  The first function 

is a modification of a 1-D slice of the PES for 22 @KK@ "#  dissociation reaction used 

in our earlier study.16 A collinear slice is selected in which the N-N distance r is fixed at 

2.0 a0 and R, the distance between H and the center of mass of N2, is varied.  This 

particular 1-D slice illustrates a reaction path with a barrier and is similar to, but not 

exactly the same as, the minimum energy path in the dissociation of K@M.  (To remove 

minor artifacts from the 1-D slice, we have slightly modified the analytic PES of 

Koizumi et al.7 which is a fit to high-order ab initio electronic structure calculations.17)  

The second function is the Morse function that is routinely used to represent uncoupled 

and dissociative motion in the bonds of diatomic and polyatomic molecules.  The 

selection of values for the three Morse parameters is not critical to our study, but our test 

case used representative values of 100 kcal/mole for the dissociation energy, 2.0 a  for 

the 

1
0
$

%  parameter, and 2.0  for the equilibrium distance. 0a

An outline of this paper is as follows.  The IMLS methods are briefly reviewed in 

Section II. The application of the methods to the two exact functions is presented in 

Section III. The discussion of results is in Section IV. A summary and conclusions are in 

Section V. 

 

II. Method  

 

            The basic aspects of the IMLS method have been given in a previous paper16 and 

in mathematical reference books.18  The method therefore will be only briefly outlined 

here.  Consider 1"@  data points with& ;iN '@i ,...,1,0(  abscissas and  & ;if '@i ,...,1,0(
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where  are positive weight functions.  Unlike the usual weight functions that 

depend only on , for IMLS methods the weight functions depend also on 
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iN N , the 

location on the PES where a fit is required. The logic of the fit demands that the weight 

functions have relatively large values for  close to  and relatively small values for the 

more distant .  For this work, the weight functions will take the form of iN
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This form has two parameters, / and n, whose optimal selection will be consider in the 

next section.  While there are a variety of ways of formulating weights,10,18 those as 

expressed in Eq. (2) are representative of IMLS applications. 

The usual minimization procedure produces normal equations that are 

conveniently expressed in matrix-vector form: 

 

                            BTW( )Ba=BTW( )f,     

 (3) 

6 



 

where a and f are column vectors, B is an , -1"0 m@  matrix, BT is a transpose matrix, 

and W( N ) is an  diagonal matrix. They have the following form: @@ 0

 

a=  ,       f=  ,       B=  

1
1
1
1

2

3

4
4
4
4

5

6

ma

a
a

!
1

0

1
1
1
1

2

3

4
4
4
4

5

6

@f

f
f

!
1

0

1
1
1
1
1

2

3

4
4
4
4
4

5

6

m
@@

m

m

NN

NN
NN

"

!

"

"

1

1
1

11

00

(4) 

W( N )= , - , - , -. +N8N8N8 @,,, 10 #diag . 

 

The solution a to Eq. (3) provides the coefficients to the fitting polynomial p at point N .   

           For the m = 0 case, the solution to Eq. (3) reduces to 
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This zero-degree IMLS (ZD-IMLS) solution is known as the Shepard method.  When 

, the first-degree IMLS (FD-IMLS) solution to Eq. (3) reduces to 1(m
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Second-degree (SD), third-degree (TD), and higher-degree IMLS do not have simple 

analytic solutions, and numerical methods will have to be used.  The most 

straightforward way involves a matrix inverse.  However, since the matrix B, known as a 

Vandermonde matrix, is ill-conditioned,18 this approach can be unstable.  Singular value 

decomposition (SVD) is a computationally more expensive numerical approach, but one 

with dramatically improved numerical stability.  We discuss the performance 

implications of each method in later sections of the paper.   

For classical trajectory applications, the derivative of the PES is required.  Since 

IMLS methods use weights that are dependent on location, the derivative of the fit is not 

a simple matter of taking the derivative of the polynomial fitting function for a constant 

set of polynomial coefficients.  However, the numerical methods to determine the 

polynomial coefficients a can be reused with great efficiency to determine the appropriate 

derivatives of a.14,15,18  To illustrate, one can re-express Eq. (3) in the form 

 

C a = d ,         (7) 

 

where a and d are vectors; C is a matrix; and a, C, and d all depend on N . Taking the 

derivative of the equation produces the following result: 
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C a’ = d’ – C’a .       (8) 

 

This is Eq. (7) with a different right-hand-side vector.  All the matrix operations on C by 

either the matrix inverse or SVD methods can be reused with this different vector.  The 

derivatives used in this paper are done that way.  No finite differencing is used.   

 

III. Results 

 

As mentioned in the Introduction, the higher-degree IMLS methods will be 

evaluated with two test cases: the Morse function and a 1-D slice of PES for the 

 dissociation reaction developed by Koizumi et alP22 @KK@ "# 7  Figure 1 gives a plot 

of these two curves as a function of the distance R for the entire range of R over which 

the fit will be measured.  We will identify these two test cases by the acronyms MO and 

HN2, respectively. As can be seen from Fig. 1, these two test case encompass both 

dissociative and reaction barrier features that are controlling PES elements in reaction 

dynamics.  Both test cases are sampled with discrete numbers of points in the IMLS fit 

procedure.  However, as mentioned in the Introduction, the evaluation of the fit will be 

with respect to the entire potential curve displayed in Fig. 1.  Both fitting errors displayed 

as a function of R and as a root mean square (rms) measure will be used in the evaluation.  

Note that the ~100 kcal/mol range for both test cases in Fig. 1 implies that a relatively 

large 1 kcal/mol rms error still implies a 1% relative error. 

As described in the previous section, an IMLS fit is a function of two weight 

function parameters (/ and n), the degree, the number of data points N, and implicitly the 
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location of those data points. In this section, all these dependencies are examined. While 

to some extent these dependencies are coupled together, each element is emphasized in 

turn.  

 

78!Dependence on /!

 

The parameter!/!!controls the deviation from singularity of the weight function 

when evaluated at an ab initio point. Figure 2 illustrates the rms fitting error as a function 

of / for the Shepard, FD-IMLS, and SD-IMLS fits for both the MO and NH2 test cases.  

For the results in the figure, n is fixed at 6 and N is fixed at 33 for equally spaced ab 

initio points. Four conclusions can be drawn from the figure. First, the results are 

qualitatively the same for both test cases.  Second, if /!is too large, the accuracy of all fits 

is degraded.  Third, the Shepard fit shows a qualitatively different behavior from the fits 

of FD-IMLS and SD-IMLS in that it has a minimum in the rms error.  For FD-IMLS and 

SD-IMLS fits, as / decrease the rms error reaches a minimum that essentially persists for 

all further decreased /. Thus, for higher-degree IMLS methods, it is necessary only that / 

be small enough for optimally accurate fits.  As the figure shows, how small is small 

enough is not a strong function of the degree of IMLS.  The fourth conclusion to draw 

from the figure is that with fixed value of /, increasing the degree of IMLS does decrease 

the rms fitting error.  All the results shown in the figure do not dramatically change with 

n. Higher degrees of IMLS than displayed in the figure continue the same trends to a 

lower and lower rms fitting error at smaller values of /8!
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The results in Fig. 2 do change as a function of N.  For example, when N = 17, 

Fig. 3 is analogous to Fig. 2 for both the MO and HN2 test cases.  As can be seen from 

the two figures, as N increases, the minimum in the Shepard fitting error becomes deeper, 

narrower, and located at smaller values of /.  For higher-degree IMLS fits, the two 

figures show that as N increases, the range of optimal values of / contracts to smaller 

values. 

Figure 4 is analogous to Fig. 2 only for the first derivative, rather than the value, 

of the potential energy.  The scale of the figure is much larger because the range of the 

first derivative is much larger than the range of energy values for the two test cases.  In 

addition to the scale change, Figs. 2 and 4 have several qualitative differences in the / 

dependence they display.  The Shepard method for either case has two minima in the rms 

error for the derivative.  One corresponds to the minimum in Fig. 2 for the rms error for 

the value.  However, the second and global minimum in the derivative error occurs at a 

value of / where the value error is about a factor of ten above optimum.  Hence, accurate 

values are accompanied by degraded derivatives.  This situation implies an oscillatory fit 

about the true value of the potential whose frequency and amplitude changes with /.  

Beyond the Shepard fit, higher-degree IMLS fits show a decreasing sensitivity to /.  Each 

of the two curves for FD-IMLS has only one minimum, which is near the optimal value 

of / for reducing the value rms error.  The SD-IMLS has a less pronounced minimum.  

Higher degree tests show a continuation of this trend of higher-degree IMLS methods 

producing smoother fits where agreement with derivative and value go hand in hand.   

For the HN2 case and for N = 33 and n = 6, Fig. 5 displays fit smoothness by 

plotting the derivative as a function of R for the Shepard method in panel (a) and for FD-
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IMLS in panel (b).  In each panel, the same three values of / are used, corresponding to 

the smallest value in Fig. 4, the value at the minimum for FD-ILMS, and the global 

minimum for the Shepard method.  Also in each panel the exact derivative is displayed.  

Panel (a) shows that decreasing the value of / increases the frequency and the amplitude 

of oscillations in the Shepard derivative.  This trend culminates at the lowest values of / 

with extreme oscillations that bottom out at a zero value of the derivative in the vicinity 

of each ab initio point.  This is the “flat spot” phenomenon.  At some intermediate value 

of /, the oscillating fitted derivative is in modest agreement with the oscillating exact 

derivative.  In panel (b), decreasing the value of / increases the frequency but not the 

amplitude of oscillations in the FD-IMLS derivative.  All small values of / result in a 

fitted derivative that closely approximates the exact derivative but might oscillate about 

it.  There is no flat spot phenomenon.  Higher-degree IMLS generally result in smoother 

and more accurate fits to derivatives for small enough /.  

The results in Fig. 5 show that the Shepard method behaves in a qualitatively 

different way from higher-degree IMLS methods in obtaining derivatives.  The origin of 

this difference is straightforward.  For all IMLS fits except the Shepard, the derivative of 

the fit comes from two contributions: the derivative of the polynomial fit itself and a 

derivative that reflects how the positional dependence of the weights changes the 

polynomial fits.  Since the Shepard fit is a zero-degree IMLS, for this IMLS fit alone the 

first contribution to the derivative is zero.  Consequently, the entire Shepard derivative is 

due to positional dependence of the weights.  No matter what form the weights take, in 

practice accurate fits to the value require highly localized weights with correspondingly 

large and variable derivatives.  The result is sensitive Shepard derivatives that are 
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insufficiently anchored to the ab initio data.  As mentioned in the introduction, the 

solution to this problem in the past has been to use the Shepard method to separately and 

directly fit values, derivatives, and Hessians.  As indicated in Fig. 5b, higher-degree 

IMLS methods are another way to correct the Shepard limitations for derivatives. 

 

B. Dependence on n 

 

The parameter n sets the width of the weight function about the point at which the 

potential is desired.  Figure 6 is analogous to Fig. 2, only for n varied and / selected at its 

optimal value.  A comparison of Figs. 2 and 6 show that the n dependence of the rms 

fitting error is much less severe than that on /.  All methods behave in qualitatively 

similar ways with optimal fits occurring for large enough values of n.  For any given 

value of n, the fitting error improves with the degree of the IMLS fit.  !Although it will 

not be shown, the rms fitting error for the first derivatives as a functions of n for optimal 

values of / is similar to Fig. 6.  For all fitting methods, large variations in n have little 

effect on the derivative fitting error once n is large enough. 

 

C. Dependence on N and on Degree 

 

The results in this section so far indicate that optimal fits for different-degree 

IMLS can be achieved for large enough values of n and for small enough values of /! 

(except for the Shepard method).  With optimal values of / and for n = 6, the rms fitting 

error as a function of N for equally spaced points is displayed in Fig. 7 for a selection of 
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different degrees up to the ninth degree. Figure 7a is for the  test case, while Figure 

7b is for the MO test case.  Since N must be larger than the degree, higher-degree IMLS 

fits are not plotted down to the lowest values of N.  As a standard of comparison, Figure 

7 also plots the rms fitting error for a cubic spline.  Over the full range of N, only discrete 

values of N are examined in the figure, namely, those that double the grid of equally 

spaced points starting from a coarsest grid of three points that exactly span the length of 

R seen in Fig. 1 for each case.  Thus N = 2

2K@

m+1, where m = 1, 2,… .  In the context of 

equally spaced points, only this choice of sampling the range of N allows reuse of all 

previously calculated ab initio points in a process of refining the fit with more ab initio 

information.  The consequences of a strategy of unequally spaced points will be discussed 

in the next part of this section.  The fitting errors in Fig. 7 for equally spaced points are 

best discussed starting first with the MO case followed by the HN2 case.  

In Fig. 7b, the MO rms error almost always decreases as the degree of IMLS 

increases.  As a consequence, for the larger numbers of data points, many order of 

magnitude improvements are possible over the Shepard method. At the ninth and highest 

degree examined, the accuracy degrades with increased degree at the highest number of 

points.  The origin of this change is the beginning of oscillations between data points that 

high-order power series expansions can suffer from.  However, IMLS is not simply a 

power series because the positional dependence of the weights introduces nonlinear 

flexibility. This is illustrated by the comparison of IMLS fits to the cubic spline fit 

displayed in Fig. 7b.  Although the zero-degree and first-degree IMLS fits have larger 

errors than the cubic spline, second- and all higher-degree IMLS fits are always superior 

to the spline.  In effect the nonlinear flexibility of the weights makes the nominal second-
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degree power series fit of SD-IMLS more accurate than the third degree power series fit 

of the spline. 

In Fig. 7a for HN2, the dependence on degree is less regular than for the MO case.  

To begin with, no IMLS fit is in general superior to the spline fit.  The reason is that the 

Koizumi et al. HN2 potential curve we are using is itself a spline fit.  The only reason the 

spline fit in Fig. 7a does not have zero rms error is that the spacing of ab initio points we 

are using is not identical to the spacing Koizumi et al. used to set the spline.  While in 

principle at any given equally spaced set of N points an IMLS fit could be superior to a 

spline fit in representing a spline curve based on a different selection of points, in practice 

the results in Fig. 7b show such occurrences for only at N = 9 for the higher-degree IMLS 

fits.  More typically, increasing the IMLS degree up to about the fourth degree decreases 

the error down to that of the spline, while further increases largely leave the error 

unchanged except at the highest values of N where the error degrades for the seventh and 

higher degrees.  The origin of this degradation is the oscillations of higher-degree power 

series expansions discussed in the MO case.  The degradation is more severe here 

because, unlike the MO case, the potential being fit is inherently a low-degree 

polynomial. 

Figure 8 is analogous to Fig. 7 only for the first derivative, rather than the value, 

of the potential energy.  The scale of the rms error is much larger in Fig. 8 because the 

range of the first derivative is much larger than the range of energy values for the two test 

cases.  Despite the scale change, Figs. 8 and 7 are qualitatively similar to each other with 

one exception.  For the derivatives, the Shepard method shows a much greater 

insensitivity to N than do any of the other methods.  For reasons discussed in Fig. 5(a), 
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the form of the Shepard method is not well suited to accurate derivatives.  The results for 

both cases in Fig. 8 show that this limitation in form make the method unable to process 

additional ab initio information on the value into more accurate fits for the derivative. 

The rms errors in Figs. 7 and 8 are a global measure of fitting error.  However, the 

error is not evenly distributed over the full range of R sampled by the fit.  In Fig. 9, the 

difference of the exact potential from the Shepard, FD-, SD-, and TD-IMLS fits in Fig. 7 

is displayed as a function of R for N = 17 for both test cases.  For the MO case in Fig. 9b, 

the majority of the error is located at R ! 2.2  for all IMLS degrees.  Since the 

equilibrium position for the MO potential curve is 2.0 , basically the error in the fit at 

each degree is located in the inner-wall region of the MO potential where the potential is 

varying most rapidly and is therefore most difficult to fit.  The FD-, SD-, and TD-IMLS 

fits are qualitatively similar with near-exact agreement at the 17 ab initio points and 

maximal disagreement in about the middle of the interval between adjacent ab initio 

points.  The Shepard error distribution is different with maximal disagreement occurring 

at the two ab initio points farthest up the inner wall.  The Shepard fit disagreement with 

ab initio points is largely controlled by the value selected for /.  As the optimal value of / 

used in Fig. 9 is reduced to smaller values, the Shepard fit will progressively come into 

agreement with the ab initio points but at the cost of greater error in the interval between 

the points.  For the HN

0a

0a

2 case in Fig. 9a, many of these trends repeat, with the addition of 

a build-up of error by all fits in the barrier region of the potential (see Fig. 1).  As in the 

case of inner-wall behavior for the MO potential, Shepard alone among the fits fails to 

get excellent agreement with all the ab initio points on the barrier because the optimal 
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value of / that reduces the global rms error does not simultaneously reduce this local 

error.   

The results in Fig. 9 are true for all values of N.  Since the construction of Figs. 7 

and 8 is based on repeated halving of an equally spaced grid, increasing N lowers the 

error primarily because it places at least some of the increased points in regions where the 

fit is poorest.  This is a successful but inefficient way to decrease the error by supplying 

more ab initio calculations. 

 

D. Dependence on Data Point Location 

 

Under ideal circumstances, one would want to generate an accurate PES with the 

fewest ab initio calculations possible.  The results above indicate that performing ab initio 

calculations on a regular grid whose grid spacing is progressively halved is not the most 

efficient way to converge the error of the fit.  Are there strategies whereby calculations at 

a few seed points can lead to automatic selection of additional points that efficiently 

converge the accuracy of the fit?  In a strictly mathematical sense, Rice19 gives a brief 

outline of an algorithm for spline least-squares fitting with variable points (knots) that 

includes automatic point selection. This spline problem is mathematically similar to the 

IMLS fitting problem we are addressing. He proves that there is no automatic selection 

procedure for progressively selecting a finite number of additional points that will in any 

optimal sense converge on the most compact spline representation of the data to a given 

accuracy.  Thus, the development of an optimal IMLS algorithm of automatic point 

selection is not likely rigorously possible. Rice does suggest that functions that specific 
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application properties may be treated with a practical algorithm.  In fact, numerous 

studies regarding PES automatic point selection indicate that useful approaches can be 

developed that are broadly useful if not rigorously successful for all possible problems.  

These studies include automatic point selection on the basis of maximum variance in the 

least squares fits,20 on the basis of a statistical confidence radius about each ab initio 

point,10 on the basis of neural networks,21 and on the basis of maximal differences 

between contending fits.22   Because the emphasis of this paper is on IMLS fits of 

different degrees, automatic point selection based on differences between contending 

IMLS fits of different degrees will be examined here.  Other principles of automatic point 

selection just mentioned could perhaps also be applied with profit to IMLS fits of higher 

degree. 

Given m ab initio seed calculations, IMLS fits of degree m-1 can be performed.  

With the proper choice of weight function parameters discussed above, these fits will be 

negligibly different for geometries very close to the m seed points (except for Shepard 

fits which will not be included in this discussion).  They will, however, be different in 

intermediate regions far away from the m seed points.  The selection of the next k ab 

initio point could thus be where they are maximally different.  The same procedure could 

be repeated with now m+k ab initio points.  Continued repetition could be terminated 

when the rms difference between the two fits drops below some input amount.  This 

procedure is defined by the number m of initial seed ab initio points, the number k of 

additional points added per repetition, and the degrees of the two contending IMLS fits. 

Table I presents the results of this automatic point selection procedure for m = 5 

equally spaced ab initio seed points, for k = 1 additional point added per repetition, and 
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for FD-ZD, SD-FD, TD-SD, and FRD-TD as the contending IMLS fits.  Both the HN2 

and MO cases are represented.  The results are expressed in terms of the total number of 

ab initio points needed to have an rms error relative to the exact potential of 4.00, 1.00, or 

0.25 kcal/mol for the higher degree of the IMLS pair of fits (e.g., for TD-SD, the rms 

error is for the TD fit).  These results are compared to the FD-exact, SD-exact, TD-exact 

and FRD-exact combinations, in other words, where the next point selected occurs where 

the IMLS fit is maximally different from the exact potential.  This combination represents 

the ideal, but unattainable, implementation of this automatic points selection strategy.  

Finally, these results are also compared to those of Fig. 7 for a grid of equally spaced 

points whose grid spacing is progressively halved until the desired rms error is reached.  

The results in Table I show that for HN2 automatic point selection by FD-ZD contending 

fits is decidedly worse than equally spaced data points in entire region of rms error, 

whereas for other contending pairs of IMLS fits it is typically not decidedly superior or 

inferior to equally spaced data points for rms errors of 1.00 kcal/mol or higher. However, 

for the highest accuracy rms error of 0.25 kcal/mol, automatic point selection can be 

decidedly better, avoiding the calculation of on the order of ten ab initio points. For the 

MO case, such savings occur at the 1.00 kcal/mol rms error level or lower. The difference 

between contending pairs of IMLS fits and contrasting an IMLS fit with the exact 

potential for FD- and SD-IMLS is noticeable, especially for rms error of 0.25 kcal/mol, 

whereas for TD- and FRD-IMLS it is insignificant. Similarly, there are only relatively 

minor differences between a maximum IMLS degree of three or four. While the results of 

SD-FD automatic point selection are better than equally spaced points, the number of 

data points used for the achievement of highest accuracy of rms error is much bigger than 
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number of data points used in TD-SD and FRD-TD contending fits. Therefore, both FD-

ZD and SD-FD are generally not as successful as contending higher-degree IMLS fits.  

This is especially true for the FD-ZD.  

In Table II, variations by one in the value of m and k are displayed for the TD-SD 

and the FRD-TD pairs in Table I.  Increasing the number of equally spaced seed points 

from five to six usually leaves unchanged or increases the total number of ab initio points 

needed to get convergence.  Larger variations in m tend to show that even values of m 

typically require more points than odd values of m.  Variations in the number of points 

added at a time never decrease the total number of ab initio points needed and about 25% 

of the time increase the total number of ab initio points. Not shown in the table is the 

smallest value of m, that of m = 3, which is not a good choice, since for this number of 

data points TD- and FRD-IMLS methods cannot be applied. In general, although superior 

to even values of m, five or seven initial seed points display better performance for the 

two test cases. 

The results in Table I do not deal with the termination of the point selection 

scheme.  The table lists the rms error of the fits relative to the exact potential, something 

that is not knowable in an actual application.  This is in fact a general problem for 

automatic point selection or repeated halving of a uniform grid.  For automatic point 

selection, the rms difference between contending IMLS fits is known, and termination 

can therefore be based on the reduction of this rms difference below some input value.  

Under ideal circumstances, one might hope the rms difference between contending fits 

might approximate to within some simple factor the rms error between the highest-degree 

IMLS fit of the pair and the exact potential.  Then selection of the input value for the rms 
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difference would be equivalent to selecting the desired final accuracy of the fit. Table III 

gives the results of this approach for the TD- and FRD-IMLS fits of Table I.  As in Table 

II, the first column gives the desired input value for the rms error of the TD- or FRD- 

IMLS fit with respect to the exact potential.  Three other columns for each IMLS fit are 

labeled by the ratio of this input value to the input value for the rms difference between 

contending IMLS fits.  This ratio times the desired rms error is used to terminate the 

automatic point selection.  Each entry in the table gives two pieces of information.  The 

first is the total number of ab initio points needed to reduce the rms difference below the 

input difference value.  The second in parentheses gives the rms error of the terminated 

fit with respect to the exact potential.  Thus, an entry in the table for a TD-IMLS column 

labeled 2.0 (for rms-difference/rms-error) and a row labeled 1.00 (for rms-error) indicates 

how many ab initio points are required to reduce the rms difference between the TD- and 

SD-IMLS fits below 2.00 kcal/mol and, in parentheses, the TD-IMLS rms error with 

respect to the exact potential.  The best value of the rms-difference/rms-error ratio is the 

one that makes the value in parentheses for each entry most like the rms error label for 

that entry’s row. 

The results in Table III for HN2 indicate that setting rms difference input value to 

half the desired rms accuracy of the fit produces fits with rms errors close to the desired 

value.  The worst mismatch in an absolute sense is a 5.47 kcal/mol rms error when a 4.00 

kcal/mol error was desired.  The worst mismatch in a relative sense is a 0.38 kcal/mol 

rms error when a 0.25 kcal/mol error was desired.  For the MO case, the results in Table 

III are more systematic but more complicated.  For the highest desired rms error of 4.00 

kcal/mol, the rms difference input value should be half that value.  For the middle desired 
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rms error of 1.00 kcal/mol, the rms difference input value should be identical to that 

value.  For the lowest desired rms error of 0.25 kcal/mol, the rms difference input value 

should be twice that value.  With such a selection, the final accuracy of the fit is never 

more than 0.18 kcal/mol above the desired value.  A simpler but less efficient strategy is 

to set the input rms difference to the value of the rms error desired.  Then only for the 

least accurate fit (4.00 kcal/mol) is the final fit accuracy too large (by at most 1.06 

kcal/mol).  Importing the best strategy for the HN2 case to the MO case will result on 

average in about 20% more ab initio calculations with all fitting errors no more than 5% 

above the desired rms error value.  Overall, the results in Table III suggest that automatic 

point selection schemes based on contending IMLS fits can be terminated with 

controllable final accuracy. 

The results in Tables I$III apply if one is planning to fit a PES prior to its use.  

Automatic point selection is carried out under static conditions where an rms error below 

a specified size is desired everywhere the PES is below some cutoff energy.  However, 

there are other circumstances where automatic point selection is carried out in a more 

dynamic environment.  For example, in ab initio dynamics, a trajectory dictates where 

information on the PES is needed next.  Consider a trajectory that has just dictated the 

calculation of the Nth ab initio point.  The trajectory now proceeds to propagate away 

from the Nth point on a PES fit constructed from the N ab initio points.  If N points were 

appropriately scattered near the trajectory’s intended path and if the PES fit were 

sufficiently accurate, perhaps the trajectory could go to completion without another ab 

initio calculation.  On the other hand, if the N points were localized away from the 

intended path of the trajectory, after k steps, the trajectory might eventually wander far 
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enough away from the N ab initio points so that the PES fit could not be trusted and an 

(N+1)th ab initio calculation would have to be performed.  Following the same ideas 

discussed in connection with Tables I–III, IMLS fits can be used to automatically 

determine when a new ab initio calculation must be calculated. 

Consider the MO test case under the extreme condition that the trajectory is at the 

Nth point RN propagating to larger values of R while the other (N-1) points are at smaller 

values of R. How far beyond RN, that is, "R, can the trajectory proceed before the error in 

the IMLS fit becomes unacceptable?  To be concrete, let RN be the larger value of R 

where the MO potential exactly equals 50 kcal/mol (i.e., half its dissociation energy).  Let 

an acceptable error be 0.01 kcal/mol.  Let the N previously calculated ab initio points be 

scattered in a uniform grid between RN and the inner value of R where the MO potential 

also exactly equals 50 kcal/mol.  If N=87, then a FD-IMLS fit gives an rms error between 

the two R values of less than 0.01 kcal/mol.  If N=19, then a TD-IMLS fit gives a better 

than 0.01 kcal/mol rms error.  For these conditions, the value of "R calculated under 

three options is displayed in Fig. 10 as a function of the degree of IMLS fit.  For each of 

the two values of N there are four curves.  The first is the largest value of "R such that 

the absolute difference between the IMLS fit and the exact MO potential is less than 0.01 

kcal/mol.  This is an ideal value of "R because it is calculated with knowledge of the 

exact potential, information not attainable in actual applications.  The figure shows that 

this ideal "R grows at a little less than exponential in the degree of the IMLS fit (i.e., a 

nearly straight line in the figure with a downward curvature).  The second curve is the 

largest value of "R with a less than 0.01 kcal/mol absolute difference between IMLS fits 

of the mth and the (m-1)th degree. For a given degree, this value of "R is always smaller 
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than that for the first curve.  In other words, the absolute difference between the mth and 

(m-1)th IMLS fits considerably overestimates the absolute difference between the mth 

IMLS fit and the exact potential.  This overestimation results in a quite conservative 

estimation of "R.  The third curve is the largest value of "R, with a less than 1.5 x 0.01 

kcal/mol absolute difference in IMLS fits.  In the language of Table III, for this curve the 

ratio rms-difference/rms-error is set to 1.5.  This value leads to a closer but uniformly 

conservative estimate of "R.  The fourth curve is the largest value of "R, with a less than 

3.0 x 0.01 kcal/mol absolute difference in IMLS fits.  This is closer to the ideal value of 

"R but can be slightly larger for the lower-degree IMLS fits.  In other words, for lower 

IMLS degrees, estimating "R this way can result in errors slightly larger than 0.01 

kcal/mol.  The general behavior of the four curves is independent of the value of N.  

However, the value of "R increases with N, although less so with IMLS fits of high 

degree.  Large increases in the acceptable error only cause the four curves to shift up 

together.  Selecting "R on the basis of the absolute difference between IMLS fits of 

degree m and (m-2) or between IMLS fits of degree m and (m-3) has negligible effect on 

the results in Fig. 10. 

A careful examination of Fig. 10 suggests an alternative strategy from that just 

described.  For the higher degree IMLS, the "R value for the mth degree determined with 

a rrms-difference/rms-error ratio set to 1.0 is similar to the "R value for the (m-1)th 

degree determined from the rms error with respect to the exact curve.  In other words, for 

the (m-1)th-degree IMLS, the mth-degree IMLS is nearly identical to the exact potential.  

Thus, if the cost of an mth-degree IMLS fit (see the following section) is too expensive 

relative to an (m-1)th-degree IMLS fit, the higher-degree IMLS fit need be employed 
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only to determine an accurate "R.  This strategy could in principle be applied to 

automatic point selection under the more static circumstances applicable for Table III.  

However, the results in the table show that this approach would not be an improvement 

over the strategy already discussed.  

Thus, in this part we conclude that, without knowing the exact potential, the 

strategy of contending IMLS fits allows an automatic selection of where or whether to 

perform additional ab initio calculations.  This applies to static situations where the large 

portions of the PES are desired before its use or to dynamic situations where the PES is 

being generated on the fly.  The automatic point selection scheme requires some 

estimation of the ratio of the differences in contending IMLS fits of different degrees to 

the difference of the highest-degree IMLS with the exact potential.  In the two test cases 

examined, the ratio has relatively simple dependencies and can be selected in 

conservative ways.  While more detailed studies of multidimensional PESs will be 

necessary to refine this approach and assess its usefulness, these initial results are 

encouraging.   

 

IV. Discussion 

Based on the results of the previous section, this section discusses in turn issues 

concerning timings, the weights, and the degree of IMLS methods.  The section  

concludes with comments concerning higher-degree IMLS methods relative to other 

fitting methods. 

The time to evaluate an IMLS fit of degree m is the sum of the timings of three 

distinct steps.  First, there is the construction of the matrix and vectors according to Eq. 
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(7).  The timing to do this step goes as N(m+1)2 because each of (m+1)2 elements 

involves a summation N ab initio points [see Eqs. (3) and (4)].  Second, there is the 

manipulation of the matrix by inversion or SVD techniques to obtain the polynomial 

coefficients.  The timing for this step goes as (m+1)3, but the prefactor for SVD is twice 

that of inversion.  Although faster, runs on the two test cases under consideration show 

that inversion can be unstable for extreme values of / or for higher degrees (m # 4).  

Third, the polynomial is evaluated in what amounts to a dot product whose timing goes as 

m.  Actual computer timings performed for an entire IMLS fit evaluation consistently 

show a time-to-solution dependence that goes as (m+1)2.  Detail decompositions of the 

timings consistently show that the matrix construction step dominates because typically 

N>>m. This situation is expected to remain true for multidimensional applications.  

Hence the computational cost of evaluations of higher-degree IMLS fits goes as the 

square of the degree.  Also in this context, the additional cost of SVD over matrix 

inversion is an insignificant factor in the overall cost of an IMLS evaluation. 

Although the basis of an IMLS fit is a polynomial, the location-dependent weights 

in effect add a nonlinear flexibility.  Hence the weights are not a casual but an integral 

component of the success of the method.  Since all weights have parameters, any 

widespread applicability of IMLS methods will require that near-optimal parameter 

values can be straightforwardly selected for each application.  The results in the previous 

section show that there is a common range of parameter values that is optimal for both 

test cases for first-degree and higher IMLS fits.  To the degree that the two test cases are 

representative, this same range should be nearly optimal for a broad range of 

applications.   
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Although not examined in the previous section, the weights can also play an 

important role in the scalability of IMLS methods to PESs with large numbers of internal 

degrees of freedom.  As described in Section II, the matrices that must be assembled for 

each evaluation of the IMLS fit involve summations over all the ab initio points 

available.  This can be a very large number of points for high-dimensional PESs, and this 

step dominates the time it takes to do an IMLS fit evaluation.  Fortunately, the nature of 

the weights provides opportunities to dramatically reduce this dependence.  No matter 

what the form, weights decline to zero rapidly with the distance of an ab initio point from 

the point where the IMLS fit is required.  For large enough distances, the weights need 

not be evaluated at all but can be effectively set to zero, obviating the need to accumulate 

information from the ab initio point involved.  Most applications of fitted PESs 

systematically sample the PES.  Software techniques can then be used to subdivide a 

large set of ab initio points into periodically updated collections near and far from the 

region of the PES currently being probed.  Then only the collection of near ab initio 

points needs to be investigated at all for an IMLS fit.  In other words, the nature of the 

weights offer opportunities to reduce the global reach of an evaluation of an IMLS fit into 

a more local reach. 

The results of the previous section do not answer the question of what is the 

optimal degree for an IMLS fit.  Two contending factors are involved that must be 

evaluated on a case-by-case basis.  The first factor is that the time to evaluate an IMLS fit 

goes as the square of the degree.  The second factor is that a higher-degree IMLS fit 

requires fewer ab initio points to achieve a given level of accuracy.  How pronounced this 

second factor is depends on the manner of selecting ab initio points and the overall 
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accuracy required.  Fine grids and high accuracy can display large changes in the value of 

N needed for a given m (see Fig. 7).  Automatic point selection and less demanding 

accuracy can make adjacent values of m have essentially the same values of N (see Table 

1).  Consequently, the optimal degree of IMLS cannot be answered in any general way.  

However, all the results of this work indicate that there are more advantages to higher-

degree IMLS methods than to the Shepard method.  In practice today, the Shepard 

method is applied only in a modified form involving separate fits to value, gradients, and 

Hessians.  The comparison of higher-degree IMLS fits to just values compared to 

modified Shepard fits to values, gradients, and Hessians is beyond the scope of this paper 

but will be the subject of a future study.  Since the origin of the modification to Shepard 

is due to poor derivative properties and because Hessians are expensive to compute, one 

would suspect that higher-degree IMLS methods will compete well in overall cost with 

modified Shepard methods.  Alternatively, just like Shepard, higher-degree IMLS 

methods can be modified, perhaps to beneficial effect. 

The results of the previous section for the MO test case allow some general 

statements regarding splines and IMLS.  The results show that TD-IMLS is considerably 

superior in accuracy to cubic splines, even though both methods are polynomial fits of 

the same degree.  As discussed earlier, the weights in IMLS methods give the nominal 

polynomial fit additional nonlinear flexibility.  While splines can be defined with higher 

degrees than cubic, the results in this paper would suggest that the comparable higher-

degree IMLS method will always be superior.  This superiority does come at a cost.  In 

multidimensional applications, the ab initio points used in a spline can be consider as the 

vertices of hypercubes in internal degree of freedom space.  Within each hypercube, the 
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coefficients of the spline polynomial can be computed once and for all and saved.  Then, 

the evaluation of the spline is no more complicated than a simple retrieval of the 

coefficients and an evaluation of the polynomial.  In contrast, the IMLS method must 

evaluate from scratch the polynomial coefficients and then use them, as in the spline, to 

evaluate the polynomial.  As discussed above, the coefficient evaluation may be 

relatively easily restricted to local ab initio information while the once-and-for-all 

evaluation of the spline coefficients is inherently global.  Thus the trade-offs between 

spline and higher-degree IMLS can be complicated.  However, comparable-degree IMLS 

methods will require fewer ab initio points for a given accuracy and are easier to 

program. 

Reproducing kernel Hilbert space methods are generalizations of splines that 

depart from simple polynomial descriptions.  Many unweighted least squares fitting 

methods similarly depart from simple polynomial descriptions (e.g., many-body fitting 

methods or rotating Morse oscillator methods).  It is beyond the scope of this paper to 

systematically compare higher-degree IMLS methods with the great variety of fitting 

approaches that have been used.  We note, however, that many apparently different fitting 

methods employ common strategies that can equally well be applied to IMLS methods.  

For example, polynomial fits in N  can be regarded as expansion in a basis set of , , 

, etc.  The fitting approach does not essentially change if one changes the basis set to 

something completely different, such as 1, e , , etc., as would apply in a rotating 

Morse oscillator approach.  Nor does the fitting approach essential change if one 

transforms the coordinate, for example, 

0N 1N

2N

N$ Ne 2$

, -eNNN $#1  as in Dunham expansions.  Both 
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basis set changes and coordinate transformations can be easily accommodated within a 

higher-degree IMLS framework.   

 

V. Conclusion 

 

We have presented the basic formal and numerical aspects of higher-degree IMLS 

methods in the context of 1-D applications for both the potential and its derivatives using 

two relatively different test cases.  For these applications we have systematically 

examined the effect of weight function parameters, the degree of the IMLS fit, and the 

number and placement of ab initio points.  From this systematic behavior, we have 

discovered regions of parameter space for the weight functions that allow compact and 

accurate representations of potentials and their derivatives for first-degree and higher-

degree IMLS fits.  We have documented how the number of ab initio points needed to 

achieve a given accuracy declines with the degree of the IMLS.  We have outlined 

automatic procedures for ab initio point selection that can optimize this decline.  

The results of this systematic study and our earlier study on one particular surface 

support further studies of IMLS methods.  Such studies are in progress for a variety of 

higher dimensional potential energy surfaces.  Other studies are being planned for the 

incorporation of IMLS techniques into trajectory routines.  In addition, the direct 

incorporation of gradients and Hessians into the IMLS framework is being explored. 
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Figure Captions 

Fig. 1: The potential in kcal/mol for both the MO (dashed line) and NH2 (solid line) 

test cases over the range of R in a0 used in the fitting procedures. 

Fig. 2:  The rms error for the potential energy in kcal/mol versus / for Shepard (dotted 

line), FD-IMLS (dash dotted line), and SD-IMLS (solid line).  Both MO (upper 

lines) and NH2 (bottom lines) test cases are displayed.  In these calculations, n 

=6, N = 33, and the ab initio points are equally spaced.   

Fig. 3:  As in Fig. 2 only for N = 17. 

Fig. 4:  As in Fig. 2 only for the rms error of the first derivative in kcal/mol/a0. 

Fig. 5:  For the NH2 test case, the first derivative in kcal/mol/a0 versus R in a0 for (a) 

Shepard [solid line (/=1x10-13), dash dotted line (/=1x10-7), dashed line 

(/=1x10-4), and the exact potential (dotted line)]; (b) FD-IMLS [solid line 

(/=1x10-13), dash dotted line (/=1x10-7), dashed line (/=1x10-4), and the exact 

potential (dotted line)].  In both cases n = 6 and N = 33. 

Fig. 6:  As in Fig. 2 only for rms error versus n for optimal /.  See text for details. 

Fig. 7:  The rms error for the potential energy in kcal/mol versus N for equally spaced 

points for both HN2 (a) and MO (b) test cases.  The solid line with circles 

denotes cubic spline.  Seven different-degree IMLS fits are denoted by Shepard 

(• • •), FD-IMLS (- - -), SD-IMLS (::), fourth-degree IMLS (:!• • :), 

seventh-degree IMLS (:!!:!!:), and ninth-degree IMLS (- • -). The 

parameter n = 6 and optimal values of / are used (see text for details). 

Fig. 8:  As in Fig. 7 only for the rms error for the first derivative. 
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Fig. 9:  The difference between IMLS fits and the exact potential in kcal/mol versus R 

in a0 for HN2 (a) and MO (b) test cases.  The lines denote Shepard (dotted), FD-

IMLS (dashed), SD-IMLS (dashed dotted) and TD-IMLS (solid).  N=17 and n = 

6 for optimal values of /. 

Fig. 10: For two different values of N, the calculated value of "R as a function of the 

degree of the IMLS fit.  Four different options for calculating "R are indicated: 

by absolute difference between IMLS fit and exact MO potential, (___); by 

absolute difference between IMLS fits of degree m and (m-1), (- - -); by 1.5 

times the absolute difference between IMLS fits of degree m and (m-1), (___ 

• • ___); and by 3.0 times the absolute difference between IMLS fits of degree 

m and (m-1), (___    ___).  The upper set of four curves are for N=87.  The 

bottom set are for N=16 where the plotted value is 0.1 x "R so as to better space 

the curves in the figure.  See text for details.   
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Table I. Number of data points needed to achieve the certain rms errors with different 

point selection strategies using FD-, SD-, TD-, and FRD-IMLS for HN2 and 

MO. 

 

               HN2 

   rms error (kcal/mol) 

                MO 

    rms error (kcal/mol) 

 

         IMLS Degree 

4.00         1.00        0.25    4.00        1.00         0.25 

FD 

FD-ZD 

FD-exact 

FD (equal grid) 

   

  14             21          47 

   6              13          23 

   9              17          33 

 

   8             20            45 

   8             13            24 

  17            33            65  

SD 

SD-FD 

SD-exact 

SD (equal grid) 

 

   8               9            20 

   7               8            17 

   9               9            33  

 

   7             12           27 

   7             10           17 

  17            33           65 

TD 

TD-SD 

TD-exact 

TD (equal grid) 

 

   9             11            15 

   7              8             17 

   9              9             33  

 

   7              9            14 

   7              9            13 

  17            17           33  

FRD 

FRD-TD 

FRD-exact 

FRD (equal grid) 

 

   9              9             17 

   8              9             16 

   9              9             17  

 

   7             10           12 

   7              9            13 

   9             17           33 
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Table II.  Number of data points needed to achieve the certain rms errors using TD-

IMLS for HN2 and MO. 

 

Rms Error   TD-SD     FRD-TD   

(kcal/mol) 5 Seed Pts. 

Adding 1 Pt 

6 Seed Pts 

Adding 1 Pt

5 Seed Pts 

Adding 2 Pts

5 Seed Pts.

Adding 1 Pt

6 Seed Pts 

Adding 1 Pt 

5 Seed Pts 

Adding 2 Pts

HN2 

   4.00 

   1.00 

   0.25 

 

9 

11 

15 

 

9 

14 

19 

 

11 

11 

15 

 

9 

9 

17 

 

8 

10 

17 

 

9 

11 

17 

MO 

   4.00 

   1.00 

   0.25 

 

7 

9 

14 

 

7 

9 

15 

 

7 

9 

13 

 

7 

10 

12 

 

7 

9 

11 

 

9 

11 

13 
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Table III.  Number of data points needed to achieve the certain rms errors using FRD-

IMLS for HN2 and MO. 

Rms Error   TD 

  Rms-Difference/Rms-Error 

  FRD 

  Rms-Difference/Rms-Error 

(kcal/mol) 2.0 1.0 0.5 2.0 1.0 0.5 

HN2 

   4.00 

   1.00 

   0.25 

 

    5 (7.98) 

    8 (4.16) 

  11 (0.83) 

 

    5 (7.98) 

    9 (1.31) 

  14 (0.32) 

 

    6 (5.45) 

  11 (0.83) 

  15 (0.24) 

 

    5 (12.23)

    7 (5.47) 

  11 (0.66) 

 

    7 (5.47) 

    9 (0.77) 

  12 (0.49) 

 

    7 (5.47) 

  11 (0.66) 

  14 (0.38) 

MO 

   4.00 

   1.00 

   0.25 

 

    5 (17.84) 

    8 (1.70) 

  13 (0.25) 

 

    6 (4.63) 

  10 (0.52) 

  16 (0.10) 

 

 

    7 (3.42) 

  13 (0.25) 

  16 (0.10) 

 

    5 (15.31)

    7 (2.37) 

  11 (0.26) 

 

    6 (5.06) 

    9 (1.18) 

  12 (0.22) 

 

 

    7 (2.37) 

  11 (0.26) 

  15 (0.20) 
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